CI1028 / INFO7071 - Biometrics and Surveillance by Computer Vision

First semester of 2019

Professor: David Menotti

Class hours: mondays and wednesdays from 7:30pm to 9:30pm*

Room: PC-05 (theoretical classes) and Lab. 5 (practical classes)

email list: https://listas.inf.ufpr.br/cgi-bin/mailman/listinfo/ci1028-menotti

  1. Once you subscribe to the list a message asking your confirmation is sent. Only after this confirmation you will effectively be subscribed.
  2. The list accepts only messages sent from the email address that you are subscribed.
  3. More than one subscription is allowed (with different email address).

Evaluation

Two written tests:
 40 points - 20 points each
Four practical tests:
 40 points - where each test is weighted by the number of classes taken
A seminar/workshop:
 20 points - slides + presentation (30/45 minutes depending on the number of attending students)

Classical Problems

  1. Face Recognition
  2. Iris Recognition
  3. Fingerprint Recognition
  4. Pedestrian Detection

Proposed Schedule

## day Content
01 02/18 Introduction of the course
02 02/20 Problem 01: Face Recognition (Theoretical) [slides1/slides2]
03 02/25 Problem 01: Face Recognition (Practical) [activity1] - Loading databases & Meanfaces
04 02/27 Problem 01: Face Recognition (Practical) [activity1] - Eigenfaces
05 03/04 no classroom -- Carnaval
06 03/06 no classroom -- Carnaval
07 03/11 Problem 01: Face Recognition (Practical) [activity1] - Classification
08 03/13 Problem 02: Face Recognition (Practical) [activity1] - Evaluation/validation
09 03/18 Problem 02: Iris Recognition (Theoretical) [slides]
10 03/20 Problem 02: Iris Recognition (Practical) [activity2] - Loading databases & extracting pupil region
11 03/25 Problem 02: Iris Recognition (Practical) [activity2] - Extracting iris region and normalization
12 03/27 Problem 02: Iris Recognition (Practical) [activity2] - Iris normalization
13 04/01 Problem 02: Iris Recognition (Practical) [activity2] - Computing features (Wavelet & LBP) for Iris Verification & Identification
14 04/03 Problem 02: Iris Recognition (Practical) [activity2] - Computing metrics (FAR/FRR/EER/ROC Curve & Accuracy) for Iris Verification & Identification
15 04/08 1st written test
-- 04/10 noshow
16 04/15 Problem 03: Fingerprint Recognition (Theoretical) [slides]
17 04/17 Problem 03: Fingerprint Recognition (Practical) [activity3] - Loading databases & Image enhancement
18 04/22 Problem 03: Fingerprint Recognition (Practical) [activity3] - Orientation Maps & Type Annotation
19 04/24 Problem 03: Fingerprint Recognition (Practical) [activity3] - Region of Interest Detection & Singular Point Detection
20 04/29 Problem 03: Fingerprint Recognition (Practical) [activity3] - Singular Point Detection & Type Classification
-- 05/01 (no classroom) holyday
21 05/06 Problem 03: Fingerprint Recognition (Practical) [activity3] - Thinning & Minutiae Detection
22 05/08 Problem 03: Fingerprint Recognition (Practical) [activity3] - Minutiae Extraction
23 05/10* Problem 03: Fingerprint Recognition (Practical) [activity3] - Pattern Matching / Score Computation
24 05/13 Problem 03: Fingerprint Recognition (Practical) [activity3] - Pattern Matching / Score Computation
-- 05/15 no classroom
25 05/20 Problem 04: Pedestrian Detection (Theorectical) [slides1/slides2/slides3]
27 05/22 Problem 04: Pedestrian Detection (Practical) [activity4] - Loading databases & Image Pyramids
28 05/27 Problem 04: Pedestrian Detection (Practical) [activity4] - HOG computation
29 05/27* Problem 04: Pedestrian Detection (Practical) [activity4] - Training SVM
30 05/29 Problem 04: Pedestrian Detection (Practical) [activity4] - Hard negative mining
31 06/03 Problem 04: Pedestrian Detection (Practical) [activity4] - Sliding windows
31 06/03* Problem 04: Pedestrian Detection (Practical) [activity4] - Non-maximum suppression
32 06/05 Problem 04: Pedestrian Detection (Practical) [activity4] - curve miss rate vs FPPW
33 06/10 2nd written tests
34 06/12
Seminars:
  • Gait as biometrics - Hamer Iboshi
  • ECG as biometrics - Mariana Carmin
  • First-person activity recognition - Leonardo Joji Takii
35 06/17
Seminars:
  • Voice as biometrics - Glenda Proença Train
  • Typing/Keystroke biometrics/dynamics - Bruno Serbena
  • Multimodality - face+iris - Gabriela Yukari Kimura
35 06/19
Seminars:
  • 3D finger printing - André Starosta
  • Handwritten signature - Diego Roessle
  • Object tracking - Gabriel Alcides Carraro
36 06/24
Seminars:
  • Ear as biometrics - Rayson Laroca
  • Fingervein - Gabriel Salomon
  • Cattle Muzzle Recognition - Wyverson Bonasoli
37 06/26
Seminars:
  • EEG brainwaves - Augusto Lopez Dantas
  • Thermal images as source for biometrics - Bruno Meyer
-- 07/01 Final exam (only for undergraduate students)

Support material


References


Databases


Subjects for Seminars

  • First-person activity recognition
  • Person action recognition
  • Person re-identification
  • Object tracking
  • Face Alignment
  • Face Frontalization
  • Gesture Recognition
  • Lip recognition
  • Gait as biometrics
  • High resolution fingerprint (pores & ridges)
  • 3D finger printing
  • Fingervein
  • Thermal images as source for biometrics
  • Typing/Keystroke biometrics/dynamics
  • Retina recognition
  • Hand geometry
  • Palm print
  • Handwritten signature
  • Hand vascular vein
  • Ear as biometrics
  • Voice as biometrics
  • ECG as biometrics
  • EEG brainwaves
  • Multimodality - face+iris
  • Multimodality - iris+eye
  • Multimodality - face+fingerprint
  • Multimodality - iris+fingerprint
  • Multimodality - face+iris
  • Multimodality - face+voice

Presence in Classes

name wt.1 wt.2 #wt# pa.1 pa.2 pa.3 pa.4 #pa# #sem# mean final mean* situation frequency absences
ANDRÉ FELIPE ALVES STAROSTA 87 65 30 80 80 40 75 26 17 73 75 aprovado 93% 4/17 5/08
BRUNO FREITAS SERBENA 100 99 40 100 100 90 90 37 19 96 100 aprovado 96% 2/25
DIEGO GRACIANO ROESSLE 60 35 19 0 70 70 0 15 0 34 35 reprovado 77% 2/18 2/20 2/25 3/11 3/13 3/18 3/25
GABRIEL ALCIDES CARRARO 40 67 21 0 50 55 60 19 19 59 60 aprovado 77% 2/18 2/20 2/25 3/11 3/20 3/27 4/03
GABRIELA YUKARI KIMURA 85 87 34 100 100 80 80 35 16 85 90 aprovado 90% 4/22 4/24 5/06
GLENDA PROENCA TRAIN 70 50 24 100 90 95 25 29 18 71 75 aprovado 93% 5/06 6/05
GUILHERME SCARIOT RAMOS 0 abandono 22% 2/18 2/20 2/25 2/27 3/20 4/08 4/15 4/17 4/22 4/24 4/29 5/06 5/08 5/10* 5/13 5/20 5/22 5/27 5/27* 5/29 6/03 6/03* 6/05 6/10
HAMER IBOSHI 70 50 24 50 70 45 0 15 18 57 60 aprovado 90% 3/27 4/24 4/29
JONAS SILVEIRA DA COSTA 0 abandono 0% 2/18 2/20 2/25 2/27 3/11 3/13 3/18 3/20 3/25 3/27 4/01 4/03 4/08 4/15 4/17 4/22 4/24 4/29 5/06 5/08 5/10* 5/13 5/20 5/22 5/27 5/27* 5/29 6/03 6/03* 6/05 6/10
LEONARDO JOJI TAKII 85 91 35 100 0 75 50 22 17 75 80 aprovado 96% 5/08
MARIANA CARMIN 67 60 25 50 80 75 60 27 15 67 70 aprovado 90% 2/27 4/22 5/06
MATHEUS DONIZETE MATOS DA SILVA 0 abandono 6% 2/25 2/27 3/11 3/13 3/18 3/20 3/25 3/27 4/01 4/03 4/08 4/15 4/17 4/22 4/24 4/29 5/06 5/08 5/10* 5/13 5/20 5/22 5/27 5/27* 5/29 6/03 6/03* 6/05 6/10
VINICIUS GEOVANE GARCIA 0 abandono 19% 2/18 2/20 2/25 3/27 4/01 4/03 4/08 4/15 4/17 4/22 4/24 4/29 5/06 5/08 5/10* 5/13 5/20 5/22 5/27 5/27* 5/29 6/03 6/03* 6/05 6/10
WILLIAN MARCEL MOSSON 0 abandono 16% 2/18 2/20 2/25 3/11 3/13 3/20 3/25 3/27 4/15 4/17 4/22 4/24 4/29 5/06 5/08 5/10* 5/13 5/20 5/22 5/27 5/27* 5/29 6/03 6/03* 6/05 6/10
ANDERSON TADASHI SANTOS IGARASHI 75 55 26 100 95 95 90 38 19 83 85 aprovado 100%
AUGUSTO LOPES DANTAS 98 60 32 100 100 75 0 24 13 69 70 aprovado 80% 4/22 4/29 5/22 5/27 5/29 6/05
BRUNO HENRIQUE MEYER 98 60 32 100 100 90 90 37 20 89 90 aprovado 96% 6/03
GABRIEL SALOMON ANICETO 100 97 39 100 100 80 95 37 19 95 100 aprovado 90% 2/27 4/22 6/05
RAYSON BARTOSKI LAROCA DOS SANTOS 92 85 35 100 100 95 100 39 20 95 100 aprovado 77% 4/17 5/13 5/22 5/27 5/29 6/03 6/05
RODRIGO LAMPIER DOS SANTOS 25 0 5 50 90 10 0 15 15 abandono 41% 4/15 4/17 4/22 4/24 4/29 5/06 5/08 5/10* 5/13 5/20 5/22 5/27 5/27* 5/29 6/03 6/03* 6/05 6/10
WYVERSON BONASOLI DE OLIVEIRA 90 97 37 100 100 95 95 39 20 96 100 aprovado 93% 5/08 5/22
wt.1 - written test 1 (100 pts)
wt.2 - written test 2 (100 pts)
#wt# - written tests total points in 40%
pa.1 - practical activity 1 (100 pts)
pa.2 - practical activity 2 (100 pts)
pa.3 - practical activity 3 (100 pts)
pa.4 - practical activity 4 (100 pts)
#pa# - practical activites total points in 40%
#sem# - seminars total points in 20%
mean & mean* - final grad