In the Target Set Selection (TSS) problem, we want to find the minimum set of individuals in a network to spread information across the entire network. This problem is NP-hard, so find good strategies to deal with it, even for a particular case, is something of interest. We introduce preprocessing rules that allow reducing the size of the input without losing the optimality of the solution when the input graph is a complex network. Such type of network has a set of topological properties that commonly occurs in graphs that model real systems. We present computational experiments with real-world complex networks and synthetic power law graphs. Our strategies do particularly well on graphs with power law degree distribution, such as several real-world complex networks. Such rules provide a notable reduction in the size of the problem and, consequently, gains in scalability.

Type

Publication

In *BRASNAM'20 - IX Brazilian Workshop on Social Network Analysis and Mining*